Measuring Impoverishment: An Overlooked Dimension of Fiscal Incidence

Sean Higgins Nora Lustig

Department of Economics Tulane University

May 6th, 2013 XX Meetings of the LACEA/IADB/WB/UNDP Research Network on Inequality and Poverty The World Bank, Washington, DC

Overview

- Standard measures of the effect of taxes and benefits on the poor
 - Poverty indicators (including squared poverty gap)
 - Inequality indicators
 - Stochastic dominance tests
 - Lorenz dominance tests
 - Measures of progressivity
 - Vertical and horizontal inequity
 - Anonymous social welfare comparisons

...leave out important information about how the poor are affected by fiscal policy.

Overview

- For example, we can have:
 - First (and higher) order stochastic dominance
 - \Rightarrow poverty (including the squared poverty gap) declining
 - \Rightarrow generalized Lorenz dominance
 - Income distribution becoming less unequal
 - Progressive net taxes
 - Low or no horizontal inequity
 - But some of the poor become substantially poorer
- Extent to which a tax and transfer system impoverishes poor or makes non-poor people poor is valuable information for analyst and policymaker
- Formally define impoverishment and establish its relationship with traditional measures
- Propose using a Markovian transition matrix and an income loss matrix

Definitions

- Well-being space Ω
 - Could be income ($\Omega \subset \mathbb{R}_+$ and $\text{sup}\,\Omega < \infty)$ or multi-dimensional
- Income before taxes and transfers y⁰_i ∈ Ω and after taxes and transfers y¹_i ∈ Ω
- Cumulative distribution functions $F_0:\Omega\to[0,1]$ and $F_1:\Omega\to[0,1]$
- Poverty line $z \in \Omega$
- There is **impoverishment** if $y_i^1 < y_i^0$ and $y_i^1 < z$ for some *i*

First Order Dominance

- Post-tax and transfer distribution does *not* weakly FOSD pre-tax and transfer distribution among the poor ⇒ *impoverishment*
 - Proof: see paper.
- Post-tax distribution *does* weakly FOSD pre-tax distribution among the poor and tax-benefit system rank-preserving ⇒ *no impoverishment*

- Proof: see paper.

- Post-tax distribution *does* weakly FOSD pre-tax distribution among the poor and re-ranking ⇒ dominance cannot determine impoverishment
 - Proof: $y^0 = (5, 8, 20), y^1 = (9, 6, 18), z = 10. F_1$ FOSD F_0 among the poor and there is impoverishment.

Horizontal Equity and Progressivity

- Horizontal inequity is neither a necessary nor sufficient condition for impoverishment.
 - Not sufficient:

 $y^0 = (5, 5, 6, 20), y^1 = (5, 7, 6, 18), z = 10$. Horizontal inequity (classical and re-ranking) has occurred but impoverishment has not.

- Not necessary:

 $y^0 = (5, 8, 20), y^1 = (6, 7, 20), z = 10$. Impoverishment has occurred but horizontal inequity (classical or re-ranking) has not.

- A progressive tax-benefit system is neither a necessary nor sufficient condition for no impoverishment.
 - Proof: see paper.

Fiscal Mobility Matrix

- Directional mobility literature provides a useful framework
 - See, for example, Fields (2008)
- Compare the status of identified individuals in the before and after taxes and transfers situations
- One can see which individuals are adversely/favorably impacted by a particular policy
- We establish dominance criteria so that alternative policies can be compared in terms of the downward mobility they induce

Definitions

- Fiscal Mobility
 - The directional movement between the before and after net taxes situations among k pre-defined income categories
- Fiscal Mobility Matrix
 - $k \times k$ transition matrix *P* where the *ij*-th element p_{ij} is the probability of moving to income group *j* after net taxes for an individual in group *i* before net taxes

 \Rightarrow *P* is a stochastic matrix with $\sum_{i=1}^{k} p_{ii} = 1 \ \forall i \in \{1, \dots, k\}$

- Poverty Lines
 - Let *z* be a vector of poverty lines between *z̄* and *z̄*. These poverty lines determine a subset *r* of the *k* income categories (*r* < *k*) that are considered poor

Downward Mobility Among the Poor

- If $\sum_{i=1}^{r} \sum_{j:j < i} p_{ij} > 0$, then there is downward mobility among the poor
- If ∑^k_{i=r+1} ∑_{j:j<r} p_{ij} > 0 then there is downward mobility of some non-poor into poverty

– Example: k = 6 and r = 3

An Illustration: Brazil

- Income distribution after taxes and transfers
 Lorenz dominates distribution before taxes and transfers
 - \Rightarrow Inequality unambiguously falls
 - To illustrate: Gini falls from 0.57 to 0.54

An Illustration: Brazil

- First order stochastic dominance over domain of extreme poverty lines (≤ \$2.50 PPP per day)
- Second order stochastic dominance over domain of poverty lines (≤ \$4.00 PPP per day)

An Illustration: Brazil

- Progressive overall tax system:
 - Kakwani index of direct and indirect taxes is 0.04
 - Kakwani index of direct transfers is 0.54
 - Reynolds-Smolensky index of after taxes and transfers income with respect to before taxes and transfers income is 0.05
- <u>However</u>:
 - 11.4% of the moderate poor become extreme poor
 - 10.5% of the vulnerable become poor

Fiscal Mobility Matrix: Brazil

		<	2.50-	4.00-	>	% of	Mean	
		2.50	4.00	10.00	10.00	Pop.	Income	
rre-tax and transier income groups	< 2.50	85%	10%	4%	1%	15.4%	\$1.45	
	2.50-	110/	700/	110/	10/	11 20/	¢2 24	
	4.00	11/0	10/0	11/0	1 /0	11.370	φ3.24	
	4.00-	0%	110/	86%	3%	33 5%	\$6.67	
	10.00	078	1170	0078	078	00.078	ψ0.07	
	>	0%	0%	13%	87%	39.8%	\$28.41	
	10.00	078	078	1070	0778	00.078	Ψ20.41	
	% of	14 3%	13 0%	36.0%	35.8%	100%	\$14 14	
	Pop.	17.070	10.076	00.078	00.078	10070	Ψι-τ.ι-τ	

1

Post-tax and transfer income groups

How Much do the Losing Poor Lose?

- Matrix of average proportional losses
 - *k* × *k* matrix *L* with *ij*-th element ℓ_{ij} equal to the average percent decrease in income of those who began in group *i* and lost income due to taxes and transfers, ending in group *j* ≤ *i*
 - Negative semi-definite and weakly lower-triangular by construction
 - There is impoverishment among the poor if and only if $\ell_{ij} < 0$ for some $j \le r$

Average Proportional Losses: Brazil

		<	2.50–	4.00-	>	% of	Group
		2.50	4.00	10.00	10.00	Pop.	Avg.
Pre-tax and transfer income groups	<	-10%				15.4%	-10%
	2.50	\$1.93					\$1.93
	2.50-	-17%	-11%			11.3%	-12%
	4.00	\$2.72	\$3.38				\$3.28
	4.00-		-18%	-16%		33.5%	-16%
	10.00		\$4.37	\$7.03			\$6.70
	>			-21%	-21%	39.8%	-21%
	10.00			\$11.02	\$31.80		\$28.85
	% of	14.3%	13.9%	36.0%	35.8%	100%	
	Pop.						

Fiscal Mobility Dominance

- In terms of fiscal mobility, is an alternative scenario more desirable *for the poor* than the actual scenario?
- Compare two fiscal mobility matrices P and P' and denote strong downward mobility dominance by the binary relation \mathcal{M}
- P M P' if P exhibits less downward mobility among the poor (and into poverty) than P'
- Formally, $P \mathcal{M} P'$ if $\sum_{m=1}^{j} p_{im} \leq \sum_{m=1}^{j} p'_{im}$ for $i \in \{2, ..., k\}$ and $j \leq r < i$, with strict inequality for some i

Alternative Scenario: Neutral Tax

- Compare actual scenario in Brazil to an alternative
- Neutral (horizontally equitable) tax
 - Individuals are taxed proportional to their incomes such that total tax revenue remains fixed
- Transfers received are still as observed
- *Ex ante*, difficult to determine whether neutral tax system will entail more or less impoverishment than actual tax system
- 16% of moderate poor become extreme poor
- 15% of vulnerable become moderately poor

Fiscal Mobility Matrix: Neutral Tax

		U							
		<	2.50-	4.00-	>	% of	Mean		
Pre-tax and transfer income groups		2.50	4.00	10.00	10.00	Pop.	Income		
	< 2.50	85%	10%	4%	1%	15.4%	\$1.45		
	2.50-	16%	73%	10%	1%	11.3%	\$3.24		
	4.00								
	4.00-	0%	15%	82%	3%	33.5%	\$6.67		
	10.00								
	>	0%	0%	17%	84%	39.8%	\$28.41		
	10.00								
	% of	1/ 00/	1/ 60/	25 0%	21 70/	100%	¢1/1/		
	Pop.	14.0/0	14.070	00.970	JH.7 /0	100 /0	ψ14.14		

Post-tax and transfer income groups

Bourguignon's Welfare Dominance

Bourguignon's Welfare Dominance

